Solution to Homework Assignment No. 2

1. (a) Yes, they form a subspace. Consider $\boldsymbol{A}, \boldsymbol{B} \in \boldsymbol{M}$ which are symmetry matrices. That is to say $\boldsymbol{A}^{T}=\boldsymbol{A}$ and $\boldsymbol{B}^{T}=\boldsymbol{B}$. We need to check the following two conditions.

- We have

$$
(\boldsymbol{A}+\boldsymbol{B})^{T}=\boldsymbol{A}^{T}+\boldsymbol{B}^{T}=\boldsymbol{A}+\boldsymbol{B} .
$$

Therefore, $\boldsymbol{A}+\boldsymbol{B}$ is also a symmetric matrix.

- For any c,

$$
(c \boldsymbol{A})^{T}=c \boldsymbol{A}^{T}=c \boldsymbol{A} .
$$

Therefore, $c \boldsymbol{A}$ is also a symmetric matrix. Since the above two conditions are satisfied, the symmetric matrices in \boldsymbol{M} form a subspace.
(b) Yes, they form a subspace. Consider $\boldsymbol{A}, \boldsymbol{B} \in \boldsymbol{M}$ which are skew-symmetry matrices. That is to say $\boldsymbol{A}^{T}=-\boldsymbol{A}$ and $\boldsymbol{B}^{T}=-\boldsymbol{B}$. We need to check the following two conditions.

- We have

$$
(\boldsymbol{A}+\boldsymbol{B})^{T}=\boldsymbol{A}^{T}+\boldsymbol{B}^{T}=(-\boldsymbol{A})+(-\boldsymbol{B})=-(\boldsymbol{A}+\boldsymbol{B}) .
$$

Therefore, $\boldsymbol{A}+\boldsymbol{B}$ is also a skew-symmetric matrix.

- For any c,

$$
(c \boldsymbol{A})^{T}=c \boldsymbol{A}^{T}=-(c \boldsymbol{A}) .
$$

Therefore, $c \boldsymbol{A}$ is also a skew-symmetric matrix. Since the above two conditions are satisfied, the skew-symmetric matrices in \boldsymbol{M} form a subspace.
(c) No, they do not form a subspace. A counterexample is given as follows. Consider

$$
\boldsymbol{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \text { and } \boldsymbol{B}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)
$$

It is obvious that $\boldsymbol{A}^{T} \neq \boldsymbol{A}$ and $\boldsymbol{B}^{T} \neq \boldsymbol{B}$. They are both unsymmetric matrices. However,

$$
\boldsymbol{A}+\boldsymbol{B}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

which is a symmetric matrix. Therefore, the unsymmetric matrices in \boldsymbol{M} do not form a subspace.
2. (a) Consider

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] } & \Longrightarrow x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \Longrightarrow\left(x_{1}+x_{2}+x_{3}\right)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left(x_{2}+x_{3}\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \Longrightarrow x_{1}^{\prime}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}^{\prime}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}^{\prime}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
\end{aligned}
$$

The column space of this matrix is \mathcal{R}^{3}. Therefore, this system has a solution for any $\left(b_{1}, b_{2}, b_{3}\right)$.
(b) Consider

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] } & \Longrightarrow x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \Longrightarrow\left(x_{1}+x_{2}+x_{3}\right)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left(x_{2}+x_{3}\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \Longrightarrow x_{1}^{\prime}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}^{\prime}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}^{\prime}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
\end{aligned}
$$

The column space of this matrix consists of all the linear combinations of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Therefore, this system has a solution for any $\left(b_{1}, b_{2}, 0\right)$. That is, b_{3} must be equal to zero.
(c) Consider

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] } & \Longrightarrow x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \Longrightarrow\left(x_{1}+x_{2}+x_{3}\right)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \Longrightarrow x_{1}^{\prime}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}^{\prime}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+x_{3}^{\prime}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
\end{aligned}
$$

The column space of this matrix consists of all the linear combinations of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
and $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Therefore, this system has a solution for any $\left(b_{1}, b_{2}, b_{2}\right)$. That is, b_{3} must be equal to b_{2}.
3. (a) First, transform \boldsymbol{A} to the reduced row echelon (RRE) form:

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 2 & 2 & 4 & 6 \\
1 & 2 & 3 & 6 & 9 \\
0 & 0 & 1 & 2 & 3
\end{array}\right] } \Longrightarrow\left[\begin{array}{lllll}
1 & 2 & 2 & 4 & 6 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lllllll}
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad(\text { subtract } 1 \times \text { row } 1) \\
&(\text { subtract } 2 \times \text { row } 2)
\end{aligned}
$$

The pivot variables are x_{1} and x_{3}, and the free variables are x_{2}, x_{4}, and x_{5}.

- Given $\left(x_{2}, x_{4}, x_{5}\right)=(1,0,0)$, we can have $\left(x_{1}, x_{3}\right)=(-2,0)$.
- Given $\left(x_{2}, x_{4}, x_{5}\right)=(0,1,0)$, we can have $\left(x_{1}, x_{3}\right)=(0,-2)$.
- Given $\left(x_{2}, x_{4}, x_{5}\right)=(0,0,1)$, we can have $\left(x_{1}, x_{3}\right)=(0,-3)$.

Therefore, we have

$$
\mathcal{N}(\boldsymbol{A})=\left\{x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
0 \\
-3 \\
0 \\
1
\end{array}\right]: \quad x_{2}, x_{4}, x_{5} \in \mathcal{R}\right\}
$$

(b) First, transform \boldsymbol{B} to the RRE form:

$$
\begin{aligned}
{\left[\begin{array}{lll}
2 & 4 & 2 \\
0 & 4 & 4 \\
0 & 8 & 8
\end{array}\right] } & \Longrightarrow\left[\begin{array}{llc}
2 & 0 & -2 \\
0 & 4 & 4 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
(\text { subtract } 1 \times \text { row } 2) \\
(\text { subtract } 2 \times \text { row } 1)
\end{array} \\
& \left.\Longrightarrow \begin{array}{|l|l|l}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
(\text { divide by } 2) \\
(\text { divide by } 4)
\end{array}
\end{aligned}
$$

The pivot variables are x_{1} and x_{2}, and the free variable is x_{3}.

- Given $x_{3}=1$, and we have $\left(x_{1}, x_{2}\right)=(1,-1)$.

Therefore, we have

$$
\mathcal{N}(\boldsymbol{B})=\left\{x_{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]: \quad x_{3} \in \mathcal{R}\right\}
$$

4. By Kirchhoff's Law, we can obtain the following equations:

- For node 1 , we have $y_{3}=y_{1}+y_{4}$.
- For node 2, we have $y_{1}=y_{2}+y_{5}$.
- For node 3, we have $y_{2}=y_{3}+y_{6}$.
- For node 4 , we have $y_{4}+y_{5}+y_{6}=0$.

We can rearrange the four equations as

$$
\left\{\begin{array}{ccccccc}
y_{1} & & -y_{3} & +y_{4} & & & =0 \\
-y_{1} & +y_{2} & & & +y_{5} & & =0 \\
& -y_{2} & +y_{3} & & & +y_{6} & =0 \\
& & & -y_{4} & -y_{5} & -y_{6} & =0
\end{array}\right.
$$

which is equivalent to $\boldsymbol{A} \boldsymbol{y}=\mathbf{0}$ given by

$$
\left[\begin{array}{cccccc}
1 & 0 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Then we proceed to find the three special solutions in the nullspace of \boldsymbol{A}. First, change \boldsymbol{A} into the RRE form:

$$
\begin{aligned}
{\left[\begin{array}{cccccc}
1 & 0 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & -1 & -1
\end{array}\right] } & \left.\Longrightarrow\left[\begin{array}{cccccc}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & -1 & -1
\end{array}\right] \quad \text { (subtract }-1 \times \text { row } 1\right) \\
& \Longrightarrow\left[\begin{array}{cccccc}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & -1 & -1
\end{array}\right] \quad(\text { subtract }-1 \times \text { row } 2) \\
& \Longrightarrow\left[\begin{array}{llll|l|cc}
1 & 0 & -1 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
(\text { subtract } 1 \times \text { row } 3) \\
(\text { subtract } 1 \times \text { row } 3) \\
(\text { subtract }-1 \times \text { row } 3)
\end{array}
\end{aligned}
$$

The pivot variables are y_{1}, y_{2}, and y_{4}, and the free variables are y_{3}, y_{5}, and y_{6}.

- Given $\left(y_{3}, y_{5}, y_{6}\right)=(1,0,0)$, we can have $\left(y_{1}, y_{2}, y_{4}\right)=(1,1,0)$.
- Given $\left(y_{3}, y_{5}, y_{6}\right)=(0,1,0)$, we can have $\left(y_{1}, y_{2}, y_{4}\right)=(1,0,-1)$.
- Given $\left(y_{3}, y_{5}, y_{6}\right)=(0,0,1)$, we can have $\left(y_{1}, y_{2}, y_{4}\right)=(1,1,-1)$.

Finally, the three special solutions in the nullspace of \boldsymbol{A} can be obtained as

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
1 \\
0
\end{array}\right], \text { and }\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right] .
$$

5. (a) Transform the matrix into the RRE form:

$$
\begin{aligned}
{\left[\begin{array}{lll}
3 & 6 & 6 \\
1 & 2 & 2 \\
4 & 8 & 8
\end{array}\right] } & \Longrightarrow\left[\begin{array}{lll}
3 & 6 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { (subtract } 1 / 3 \times \text { row } 1 \text { (subtract } 4 / 3 \times \text { row } 1 \text {) }
\end{aligned}
$$

The original matrix is of rank 1 and can be written as

$$
\left[\begin{array}{lll}
3 & 6 & 6 \\
1 & 2 & 2 \\
4 & 8 & 8
\end{array}\right]=\boldsymbol{u} \boldsymbol{v}^{T}=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right] .
$$

We now find the nullspace matrix. Since

$$
\boldsymbol{R}=\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]
$$

the nullspace matrix is given by

$$
\boldsymbol{N}=\left[\begin{array}{c}
-\boldsymbol{F} \\
\boldsymbol{I}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

(b) Transform the matrix into the RRE form:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
2 & 2 & 6 & 4 \\
-1 & -1 & -3 & -2
\end{array}\right] } & \Longrightarrow\left[\begin{array}{llll}
2 & 2 & 6 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll}
1 & 1 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right](\text { subtract }-1 / 2 \times \text { row } 1)
\end{aligned}
$$

The original matrix is of rank 1 and can be written as

$$
\left[\begin{array}{cccc}
2 & 2 & 6 & 4 \\
-1 & -1 & -3 & -2
\end{array}\right]=\boldsymbol{u} \boldsymbol{v}^{T}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 3 & 2
\end{array}\right] .
$$

We now find the nullspace matrix. Since

$$
\boldsymbol{R}=\left[\begin{array}{llll}
1 & 1 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]
$$

the nullspace matrix is given by

$$
\boldsymbol{N}=\left[\begin{array}{c}
-\boldsymbol{F} \\
\boldsymbol{I}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -3 & -2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

6. (a) Since

$$
\boldsymbol{A}=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{I}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{F}
\end{array}\right]
$$

the nullspace matrix is

$$
N=\left[\begin{array}{c}
-F \\
I
\end{array}\right]=\left[\begin{array}{c}
-I \\
I
\end{array}\right]
$$

(b) Since

$$
B=\left[\begin{array}{ll}
I & I \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
I & F \\
0 & 0
\end{array}\right]
$$

the nullspace matrix is

$$
N=\left[\begin{array}{c}
-F \\
I
\end{array}\right]=\left[\begin{array}{c}
-I \\
I
\end{array}\right] .
$$

(c) Since

$$
C=\left[\begin{array}{lll}
\boldsymbol{I} & \boldsymbol{I} & \boldsymbol{I}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{F}
\end{array}\right]
$$

the nullspace matrix is

$$
N=\left[\begin{array}{c}
-\boldsymbol{F} \\
I
\end{array}\right]=\left[\begin{array}{cc}
-\boldsymbol{I} & -\boldsymbol{I} \\
I & 0 \\
0 & I
\end{array}\right]
$$

7. Consider the augmented matrix and perform elimination, and we have

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 3 & 3 & 2 & 1 \\
2 & 6 & 9 & 5 & 5 \\
-1 & -3 & 3 & 0 & 5
\end{array}\right] } \Longrightarrow\left[\begin{array}{lllll}
1 & 3 & 3 & 2 & 1 \\
0 & 0 & 3 & 1 & 3 \\
0 & 0 & 6 & 2 & 6
\end{array}\right] \begin{array}{l}
\text { (subtract } 2 \times \text { row } 1) \\
\text { (subtract }-1 \times \text { row } 1)
\end{array} \\
& \Longrightarrow\left[\begin{array}{lllll}
1 & 3 & 0 & 1 & -2 \\
0 & 0 & 3 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad(\text { subtract } 1 \times \text { row } 2) \\
&\text { (subtract } 2 \times \text { row } 2)
\end{aligned}
$$

The pivot variables are x_{1} and x_{3}, and the free variables are x_{2} and x_{4}. First, we want to find a particular solution. Choose the free variables as $x_{2}=x_{4}=0$. Then we have $x_{1}=-2$ and $x_{3}=1$. Therefore, a particular solution is

$$
\boldsymbol{x}_{p}=(-2,0,1,0) .
$$

Then we want to find the nullspace vectors \boldsymbol{x}_{n}.

- Given $\left(x_{2}, x_{4}\right)=(1,0)$, we can have $\left(x_{1}, x_{3}\right)=(-3,0)$.
- Given $\left(x_{2}, x_{4}\right)=(0,1)$, we can have $\left(x_{1}, x_{3}\right)=(-1,-1 / 3)$.

Therefore, we can obtain

$$
\boldsymbol{x}_{n}=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
-1 / 3 \\
1
\end{array}\right]
$$

where $x_{2}, x_{4} \in \mathcal{R}$. Finally, the complete solution is given by

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
-1 / 3 \\
1
\end{array}\right]
$$

where $x_{2}, x_{4} \in \mathcal{R}$.
8. (a) Since this system has only one special solution, the nullspace solution is

$$
\boldsymbol{x}_{n}=x_{k} \boldsymbol{s}
$$

where x_{k} is the free variable. The nullspace solutions \boldsymbol{x}_{n} form a line, and we can know that \boldsymbol{A} is with full row rank $r=m=4-1=3$.
(b) For $\boldsymbol{s}=(2,3,1,0)$, the last zero restricts the variable x_{4} to be a pivot variable. Therefore, the RRE form \boldsymbol{R} is

$$
\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(c) Since this matrix \boldsymbol{A} is with full row rank $r=m=3$, we know that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ can be solved for all \boldsymbol{b}.

