Solution to Homework Assignment No. 2

- 1. (a) Yes, they form a subspace. Consider $A, B \in M$ which are symmetry matrices. That is to say $A^T = A$ and $B^T = B$. We need to check the following two conditions.
 - We have

$$(\boldsymbol{A} + \boldsymbol{B})^T = \boldsymbol{A}^T + \boldsymbol{B}^T = \boldsymbol{A} + \boldsymbol{B}$$

Therefore, $\boldsymbol{A} + \boldsymbol{B}$ is also a symmetric matrix.

• For any c,

$$(c\mathbf{A})^T = c\mathbf{A}^T = c\mathbf{A}.$$

Therefore, cA is also a symmetric matrix. Since the above two conditions are satisfied, the symmetric matrices in M form a subspace.

- (b) Yes, they form a subspace. Consider $A, B \in M$ which are skew-symmetry matrices. That is to say $A^T = -A$ and $B^T = -B$. We need to check the following two conditions.
 - We have

$$(A + B)^T = A^T + B^T = (-A) + (-B) = -(A + B).$$

Therefore, A + B is also a skew-symmetric matrix.

• For any c,

$$(c\boldsymbol{A})^T = c\boldsymbol{A}^T = -(c\boldsymbol{A}).$$

Therefore, cA is also a skew-symmetric matrix. Since the above two conditions are satisfied, the skew-symmetric matrices in M form a subspace.

(c) No, they do not form a subspace. A counterexample is given as follows. Consider

$$oldsymbol{A} = egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix} ext{ and } oldsymbol{B} = egin{pmatrix} 0 & 0 \ 1 & 1 \end{pmatrix}.$$

It is obvious that $A^T \neq A$ and $B^T \neq B$. They are both unsymmetric matrices. However,

$$oldsymbol{A}+oldsymbol{B}=egin{pmatrix} 1&1\1&1 \end{pmatrix}$$

which is a symmetric matrix. Therefore, the unsymmetric matrices in M do not form a subspace.

2. (a) Consider

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \implies x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\implies (x_1 + x_2 + x_3) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + (x_2 + x_3) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\implies x_1' \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2' \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3' \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} .$$

The column space of this matrix is \mathcal{R}^3 . Therefore, this system has a solution for any (b_1, b_2, b_3) .

(b) Consider

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \implies x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$\implies (x_1 + x_2 + x_3) \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + (x_2 + x_3) \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$\implies x_1' \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2' \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3' \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

The column space of this matrix consists of all the linear combinations of $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$. Therefore, this system has a solution for any $(b_1, b_2, 0)$. That is, b_3 must be equal to zero.

(c) Consider

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \implies x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$\implies (x_1 + x_2 + x_3) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$\implies x_1' \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2' \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + x_3' \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

The column space of this matrix consists of all the linear combinations of $\begin{bmatrix} 1\\0 \end{bmatrix}$

and $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Therefore, this system has a solution for any (b_1, b_2, b_2) . That is, b_3 must be equal to b_2 .

3. (a) First, transform A to the reduced row echelon (RRE) form:

$$\begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}$$
(subtract $1 \times \text{row } 1$)
$$\implies \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(subtract $2 \times \text{row } 2$)
(subtract $1 \times \text{row } 2$)

The pivot variables are x_1 and x_3 , and the free variables are x_2 , x_4 , and x_5 .

- Given $(x_2, x_4, x_5) = (1, 0, 0)$, we can have $(x_1, x_3) = (-2, 0)$.
- Given $(x_2, x_4, x_5) = (0, 1, 0)$, we can have $(x_1, x_3) = (0, -2)$.
- Given $(x_2, x_4, x_5) = (0, 0, 1)$, we can have $(x_1, x_3) = (0, -3)$.

Therefore, we have

$$\mathcal{N}(\mathbf{A}) = \left\{ x_2 \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} 0\\0\\-2\\1\\0 \end{bmatrix} + x_5 \begin{bmatrix} 0\\0\\-3\\0\\1 \end{bmatrix} : \quad x_2, x_4, x_5 \in \mathcal{R} \right\}.$$

(b) First, transform \boldsymbol{B} to the RRE form:

$$\begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8 \end{bmatrix} \implies \begin{bmatrix} 2 & 0 & -2 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{bmatrix} \text{ (subtract } 1 \times \text{row } 2) \text{ (subtract } 2 \times \text{row } 1)$$
$$\implies \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \text{ (divide by } 2) \text{ (divide by } 4)$$

The pivot variables are x_1 and x_2 , and the free variable is x_3 .

• Given $x_3 = 1$, and we have $(x_1, x_2) = (1, -1)$.

Therefore, we have

$$\mathcal{N}(\boldsymbol{B}) = \left\{ x_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} : \quad x_3 \in \mathcal{R} \right\}.$$

- 4. By Kirchhoff's Law, we can obtain the following equations:
 - For node 1, we have $y_3 = y_1 + y_4$.
 - For node 2, we have $y_1 = y_2 + y_5$.

- For node 3, we have $y_2 = y_3 + y_6$.
- For node 4, we have $y_4 + y_5 + y_6 = 0$.

We can rearrange the four equations as

$$\begin{cases} y_1 & -y_3 + y_4 & = 0\\ -y_1 + y_2 & +y_5 & = 0\\ & -y_2 + y_3 & +y_6 & = 0\\ & & -y_4 - y_5 - y_6 & = 0 \end{cases}$$

which is equivalent to Ay = 0 given by

						y_1	
[1	0	-1	1	0	0	$ y_2 $	[0]
-1	1	0	0	1	0	y_3	0
0	-1	1	0	0	1	y_4	$= _{0} $
0	0	0	-1	-1	-1	y_5	0
-					_	y_6	

Then we proceed to find the three special solutions in the nullspace of A. First, change A into the RRE form:

$$\begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 & -1 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 & -1 \end{bmatrix}$$
(subtract $-1 \times \text{row } 1$)
$$\implies \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 & -1 & -1 \end{bmatrix}$$
(subtract $1 \times \text{row } 3$)
(subtract $1 \times \text{row } 3$)
(subtract $1 \times \text{row } 3$)
(subtract $-1 \times \text{row } 3$)
(subtract $1 \times \text{row } 3$)
(subtract $-1 \times \text{row } 3$)

The pivot variables are y_1 , y_2 , and y_4 , and the free variables are y_3 , y_5 , and y_6 .

- Given $(y_3, y_5, y_6) = (1, 0, 0)$, we can have $(y_1, y_2, y_4) = (1, 1, 0)$.
- Given $(y_3, y_5, y_6) = (0, 1, 0)$, we can have $(y_1, y_2, y_4) = (1, 0, -1)$.
- Given $(y_3, y_5, y_6) = (0, 0, 1)$, we can have $(y_1, y_2, y_4) = (1, 1, -1)$.

Finally, the three special solutions in the nullspace of A can be obtained as

$$\begin{bmatrix} 1\\1\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\0\\-1\\1\\0\\0\end{bmatrix}, \text{ and } \begin{bmatrix} 1\\1\\0\\-1\\0\\1\end{bmatrix}.$$

5. (a) Transform the matrix into the RRE form:

$$\begin{bmatrix} 3 & 6 & 6 \\ 1 & 2 & 2 \\ 4 & 8 & 8 \end{bmatrix} \implies \begin{bmatrix} 3 & 6 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(subtract $1/3 \times \text{row 1}$)
(subtract $4/3 \times \text{row 1}$)
$$\implies \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(divide by 3)

The original matrix is of rank 1 and can be written as

$$\begin{bmatrix} 3 & 6 & 6 \\ 1 & 2 & 2 \\ 4 & 8 & 8 \end{bmatrix} = \boldsymbol{u}\boldsymbol{v}^T = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}.$$

We now find the nullspace matrix. Since

$$\boldsymbol{R} = \begin{bmatrix} \boldsymbol{1} & \boldsymbol{2} & \boldsymbol{2} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{F} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$$

the nullspace matrix is given by

$$\boldsymbol{N} = \begin{bmatrix} -\boldsymbol{F} \\ \boldsymbol{I} \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(b) Transform the matrix into the RRE form:

$$\begin{bmatrix} 2 & 2 & 6 & 4 \\ -1 & -1 & -3 & -2 \end{bmatrix} \implies \begin{bmatrix} 2 & 2 & 6 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ (subtract } -1/2 \times \text{row 1)}$$
$$\implies \begin{bmatrix} 1 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ (divide by 2)}$$

The original matrix is of rank 1 and can be written as

$$\begin{bmatrix} 2 & 2 & 6 & 4 \\ -1 & -1 & -3 & -2 \end{bmatrix} = \boldsymbol{u}\boldsymbol{v}^{T} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 & 2 \end{bmatrix}.$$

We now find the nullspace matrix. Since

$$\boldsymbol{R} = \begin{bmatrix} \boldsymbol{1} & \boldsymbol{1} & \boldsymbol{3} & \boldsymbol{2} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{F} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$$

the nullspace matrix is given by

$$\boldsymbol{N} = \begin{bmatrix} -\boldsymbol{F} \\ \boldsymbol{I} \end{bmatrix} = \begin{bmatrix} -1 & -3 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

6. (a) Since

$$A = \begin{bmatrix} I & I \end{bmatrix} = \begin{bmatrix} I & F \end{bmatrix}$$

the nullspace matrix is

$$N = \begin{bmatrix} -F \\ I \end{bmatrix} = \begin{bmatrix} -I \\ I \end{bmatrix}.$$

(b) Since

$$B = \begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{F} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

the nullspace matrix is

$$N = \begin{bmatrix} -F \\ I \end{bmatrix} = \begin{bmatrix} -I \\ I \end{bmatrix}.$$

(c) Since

$$C = \begin{bmatrix} I & I & I \end{bmatrix} = \begin{bmatrix} I & F \end{bmatrix}$$

the nullspace matrix is

$$N = \begin{bmatrix} -F \\ I \end{bmatrix} = \begin{bmatrix} -I & -I \\ I & 0 \\ 0 & I \end{bmatrix}$$

7. Consider the augmented matrix and perform elimination, and we have

$$\begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 2 & 6 & 9 & 5 & 5 \\ -1 & -3 & 3 & 0 & 5 \end{bmatrix} \implies \begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 0 & 0 & 3 & 1 & 3 \\ 0 & 0 & 6 & 2 & 6 \end{bmatrix} \text{ (subtract } 2 \times \text{row } 1) \text{ (subtract } -1 \times \text{row } 1)$$
$$\implies \begin{bmatrix} 1 & 3 & 0 & 1 & -2 \\ 0 & 0 & 3 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ (subtract } 1 \times \text{row } 2) \text{ (subtract } 2 \times \text{row } 2)$$
$$\implies \begin{bmatrix} 1 & 3 & 0 & 1 & -2 \\ 0 & 0 & 3 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ (subtract } 2 \times \text{row } 2)$$
$$\implies \begin{bmatrix} 1 & 3 & 0 & 1 & -2 \\ 0 & 0 & 1 & 1/3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ (divide by } 3)$$

The pivot variables are x_1 and x_3 , and the free variables are x_2 and x_4 . First, we want to find a particular solution. Choose the free variables as $x_2 = x_4 = 0$. Then we have $x_1 = -2$ and $x_3 = 1$. Therefore, a particular solution is

$$\boldsymbol{x}_p = (-2, 0, 1, 0).$$

Then we want to find the nullspace vectors \boldsymbol{x}_n .

- Given $(x_2, x_4) = (1, 0)$, we can have $(x_1, x_3) = (-3, 0)$.
- Given $(x_2, x_4) = (0, 1)$, we can have $(x_1, x_3) = (-1, -1/3)$.

Therefore, we can obtain

$$\boldsymbol{x}_n = x_2 \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -1\\0\\-1/3\\1 \end{bmatrix}$$

where $x_2, x_4 \in \mathcal{R}$. Finally, the complete solution is given by

$$m{x} = m{x}_p + m{x}_n = \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix} + x_2 \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -1\\0\\-1/3\\1 \end{bmatrix}$$

where $x_2, x_4 \in \mathcal{R}$.

8. (a) Since this system has only one special solution, the nullspace solution is

$$\boldsymbol{x}_n = x_k \boldsymbol{s}$$

where x_k is the free variable. The nullspace solutions x_n form a line, and we can know that A is with full row rank r = m = 4 - 1 = 3.

(b) For $\mathbf{s} = (2, 3, 1, \mathbf{0})$, the last zero restricts the variable x_4 to be a pivot variable. Therefore, the RRE form \mathbf{R} is

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(c) Since this matrix A is with full row rank r = m = 3, we know that Ax = b can be solved for all b.